Characterization of Inhibitory GABA-A Receptor Activation during Spreading Depolarization in Brain Slice
نویسندگان
چکیده
Spreading depolarization (SD) is a slowly propagating wave of near complete depolarizations of neurons and glia. Previous studies have reported large GABA releases during SD, but there is limited understanding of how GABA release and receptor activation are regulated and influence the propagating SD wavefront, as well as an excitatory phase immediately following the passage of SD. The present study characterized GABA-A type receptor (GABAAR) currents during SD generated by KCl microinjection in acute hippocampal slices from adult mice. Spontaneous GABAAR-mediated currents (sIPSCs) were initially enhanced, and were followed by a large outward current at the wavefront. sIPSC were then transiently supressed during the late SD phase, resulting in a significant reduction of the sIPSC/sEPSC ratio. The large outward current generated during SD was eliminated by the GABAAR antagonist gabazine, but the channel potentiator/agonist propofol failed to potentiate the current, likely because of a ceiling effect. Extracellular Cl- decreases recorded during SD were reduced by the antagonist but were not increased by the potentiator. Together with effects of GABAAR modulators on SD propagation rate, these results demonstrate a significant inhibitory role of the initial GABAAR activation and suggest that intracellular Cl- loading is insufficient to generate excitatory GABAAR responses during SD propagation. These results provide a mechanistic explanation for facilitating effects of GABAAR antagonists, and the lack of inhibitory effect of GABAAR potentiators on SD propagation. In addition, selective suppression of GABA transmission in the late SD period and the lack of effect of GABAA modulators on the duration of SD suggests that GABA modulation may not be effective approach to protect neurons during the vulnerable phase of SD.
منابع مشابه
Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملA depolarizing inhibitory response to GABA in brainstem auditory neurons of the chick.
Neurons in the brainstem auditory nuclei, n. magnocellularis and n. laminaris, of the chick are contacted by terminals containing the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). In this report we describe the physiological response of these neurons to GABA using an in vitro slice preparation. In brainstem auditory neurons, GABA produced a depolarization of up to 20 mV and an ass...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملRescue of Inhibitory Synapse Strength following Developmental Hearing Loss
Inhibitory synapse dysfunction may contribute to many developmental brain disorders, including the secondary consequences of sensory deprivation. In fact, developmental hearing loss leads to a profound reduction in the strength of inhibitory postsynaptic currents (IPSCs) in the auditory cortex, and this deficit persists into adulthood. This finding is consistent with the general theory that the...
متن کاملSynaptic release and extracellular actions of Zn limit propagation of spreading depression and related events in vitro and in vivo
Aiba I, Carlson AP, Sheline CT, Shuttleworth CW. Synaptic release and extracellular actions of Zn limit propagation of spreading depression and related events in vitro and in vivo. J Neurophysiol 107: 1032–1041, 2012. First published November 30, 2011; doi:10.1152/jn.00453.2011.—Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarizatio...
متن کامل